
�

log2ps
Technical Manual

Ottar Kvindesland, LA9IHA

This document is intended for those of you who enjoys tinkering wi th
software. It's purpose is to p rovide an easier access to the code of log2ps.
The program is under contious development, and contributions are very
welcome, bo th as ideas and new code.

The reader is assumed having a good understanding and practice in C++ programming.
Also, the detailed specification is the code itself.

The author is not an experienced C-programmer, and this project has also been a learning
exercise for the use of pointers. I have tried to avoid pointers, but it seems to be hard to
avoid them.

Program Overview

The program is written in Borland Turbo C++ 3.0. It performs the following sequence for
production of cards:

• Read the configuration file
• Create PostScript header
• Read a line from the log output
• Add a QSL card to the PostScript tail
• Continue until log is completely read
• Write configurations back to file.

It is composed of the following CPP and H files:

CFG.CPP Maintain the configuration paramters and support of such.

L2P_COM.CPP Functions for converting log file to QSL cards in the PostScript
tail.

LOG2PS.CPP Contains main function.

�

LOG-GEN.CPP Reads the file generated by your log program and pass on
accepted entries to QSL card-producing functions.

MAN.CPP Prints a short manual and presents legal switches on screen.

O_FILES.CPP Functions regarding file handeling

O_STR.CPP Functions regarding string handeling

PS.CPP Functions to create PostScript header in output file.

ICONS.CPP Functions to create place EPS icons on the card.

STRUCT.H Structures and datastructures
L2P_GLOB.H External definitions of configuration parameters.

Important data Structures and Variables

Structures are defined in struct.h . Global variables are defined in l2p_glob.h .

tlpos
Structure holds first and last position on substrings in source file from log. This is station
worked, time, date, frequency, mode and report.

The positions are held as integers and a char value describes type of definitions. Legal
definitions are A, G and E.

cfgElType
The configuration parameter has a character string for data. The type describes where data
should be stored, i.e. int, float or boolean. Min and Max values are used for validation
purposes.

cfgType
A structure holding all parameters used in log2ps.

Hence the vital global data are:
tlogtbl c_qp;
cfgType cfg;

Project File

-[_]--------------------- Project: LOG2PS --------------------1-[•
 File name Location Lines Code Data
 LOG-GEN.CPP . 327 1552 728
 LOG2PS.CPP . 75 128 7247
 L2P_COM.CPP . 315 2262 1121

�

 MAN.CPP . 394 2429 9812
 PS.CPP . 699 3943 14843
 O_STR.CPP . 536 1408 7
 CFG.CPP . 1257 9943 3263
 O_FILES.CPP . 24 56 2
 ICONS.CPP . 91 504 458

Execution Path of log2ps

The main program is found in the file log2ps.cpp . It starts with reading the config file. If
arguments are passed on the command line theese are detected by the function getCfg .
This will i n this case return false and the program will place all configuration data onto the
config file.

When the program is executed without command line parameters the program will follow
the normal card producing sequence, and filally fill the last sheets with empty cards if
needed.

Reading Configuration
See cfg.cpp , function getCfg .
First the config variable cfg is initially, then the config file is read and data is placed into
cfg . Any switches read as command line parameters are then read and checked in the
function redefCfg .

Printing Header
See ps.cpp , function PS_print_header .
First the output file is defined. Then the header is composed in PS_print_header where
the global variable cfg is reffered to when necessary to select which parts of the standard
header that has to be adopted, or may be excluded.

Reading Log
See log-gen.cpp , function other_readLog .
First the input file is defined and the existence is established. One line is then read from the
log at a time. The elements station worked, year, day, hour, minute and frequency are
checked and validated. If succsessful the line is forwarded to function printCard in
l2p_com.cpp , where the appropriate substrings are selected, and the PostScript statement
is created in the function makeQSL. Then next log line is fetched and so on.

PostScript Code

The reader is reffered to my contribution to Elektor Software 96-97 where it is described
in greater detail as QSL.PS.

Post Script is a stack oriented language. Readers familiar with other similar languages like
Lisp and Prolog should have an advantage. If the language is unfamiliar, relevant
documentation by Adobe inc should be studied.

�

The script is composed of a header and a tail. The header defines the layout of the card,
and how it is placed on the sheet. The tail is set up of calls to this header with parameters
as elements from the QSO. This is station worked, time, date, rpt etc.

The header performs the following tasks in sequence:

• Initial definitions set out fonts and papersize and directions. For fine details please
refer to literature 2).

• The ISO vector allows for Norwegian letters. Literature 2) gives the details.
• Various relationships and definitions contain simple procedures which assign

relationships between instants on the QSL card, e.g coordinates, strings, sizes of
boxes, shades of the logo etc.

• PosLittleBox.... finds the properties of the little boxes containing the particulares of
the QSO.

• posNqslAZ gives the coordinates of the QSL card. The code describes number of
cards on a sheet, and the position of the cards on the sheet.

• Boxes and corners. You can mark the corners of the QSL card, or you can draw a box
around. it. The small boxes containing details of the QSO is also drawn in this section.

• Information section. Here all fixed strings like 'To Radio', 'OPR' etc is written.
• Font section. Declares the various fonts. For simplicity only standard fonts have been

used. When a font definition ending with '_n' is chosen the ISO-vector will be
implemented.

• QSO data section. Data from the QSO is present on stack. A box is drawn and title
and date is inserted into it. The field To Radio gets the signature of the station
worked.

• Print standard. Calls the procedures needed to print an empty standard QSL card.
• Print local. Places operators own particulars on the QSL card.
• Extra information. Procedures to print special event banner on the right hand side of

the QSL card, QTH for portable operation, and a logo for NRRL, the Norwegian
Amateur Radio Society.

• Print cards. With all particulares from the QSO on the stack the procedures required
for the QSL card will be invoked. Print1Card will cause the a sheet of QSL cards to be
printed out on the postscript printer.

log2ps will , based on configuration data tailor the postscript to the QSL card defined.
Hence some procedures may only be defined with certain configurations set.

Further developments

As with all software there are ideas to implement. I have so far thought of a few.

• JAVA, GUI config setting. The setting of configurations are well suited for a GUI
interface. Java beeing the coming thing, and write once - run everywhere may be a
good alternative to Borland C++ 3.0 for DOS. Another advantage for free is the lack
of pointers.

�

• More Efficient and Intelli gent PostScript Code. PostScript beeing such a powerful tool
lends it self to be more used. E.g. more dynamic card production, so that say only your
40m GP will appear on your card if you are QSL'ing a 7MHz QSO. You could also
have greetings in the language of the receiving station and many other not that useful,
but fun things on the card.

Literature

1) Postscript Language, Tutorial and Cookbook by Adobe Systems Incorporated
 (the blue book) is a natural place to start the study of Postscript.

2) Postscript Language Reference Manual by Adobe Systems Incorporated (the red
 book)gives all the details of the language ignored by the book above. An
 understanding of Postscript is essential before buying the Reference
 Manual.

3) Encapsulated PostScript File Format Specification, version 3.0 by Adobe Systems
 Incorporated describes the EPS format, and how to include them into a PostScript
 document. Available at http://www.adobe.com .

ERROR: undefined
OFFENDING COMMAND: ��

STACK:

